(PDF) Hydrogeophysical Study of Sub-Basaltic Alluvial Aquifer in the Southern Part of Al-Madinah Al-Munawarah, Saudi Arabia

Sustainability 2021,13, 9841 19 of 20


Al-Shaibani, A.; Lloyed, J.; Abokhodai, A.; Al-Ahmari, A. Hydrogeological and quantitative groundwater assessment of the

basaltic aquifer, Northern Harrat Rahat, Saudi Arabia. Arab Gulf J. Sci. Res. 2007,25, 39–49.


El Maghraby, M.M.S.; El Nasr, A.K.O.A.; Hamouda, M.S.A. Quality assessment of groundwater at south Al Madinah Al

Munawarah area, Saudi Arabia. Environ. Earth Sci. 2013,70, 1525–1538. [CrossRef]


Gutub, S. A case study of al-Madinah’s water resources and reclaimed wastewater reuse perspective. Int. J. Civ. Environ. Eng.

2013,13, 9–16.


Taibah University Research and Consulting Institute. Study of Shallow Water Table Rise Problem in Almadinah Almunawarah—Phase

1; Final Report; Taibah University: Madinah, Saudi Arabia, 2011.


Brown, G.F.; Schmidt, D.L. Geology of the Arabian Peninsula, Shield Area of Western Saudi Arabia; U.S. Geological Survey Professional

Parer 560-A: Washington, DC, USA, 1989.


Johnson, N.M.; Officer, C.B.; Opdyke, N.D.; Woodard, G.D.; Zeitler, P.K.; Lindsay, E.H. Rates of Late Cenozoic tectonism in the

Vallecito–Fish Creek basin, western Imperial Valley, California. Geology 1983,11, 664–667. [CrossRef]


Pellaton, C. Geologic Map of the Al Madinah Quadrangle. Sheet 24D. In Geologic Map GM-52C, Scale 250,000; Ministry of

Petroleum and Mineral Resources: Riyadh, Saudi Arabia, 1981.


Moufti, M.R.; Moghazi, A.M.; Ali, K.A. 40Ar/39Ar geochronology of the Neogene–Quaternary Harrat Al-Madinah intercontinen-

tal Volcanic Field, Saudi Arabia: Implications for duration and migration of volcanic activity. J. Asian Earth Sci.


,62, 253–268.



Moufti, M.R.; Németh, K. The intra-continental Harrat Al Madinah volcanic field, Western Saudi Arabia: A proposal to establish

Harrat Al Madinah as the first volcanic geopark in the Kingdom of Saudi Arabia. Geoheritage 2013,5, 185–206. [CrossRef]


Camp, V.E.; Roobol, M.J. Geology of the Cenozoic Lava Field of Harrat Rahat, Kingdome of Saudi Arabia. In Directorate General of

Mineral Resources, Geoscience Map GM-123 with Text; Ministry of Petroleum and Mineral Resources, Directorate General of Mineral

Resources: Jiddah, Saudi Arabia, 1991; p. 37.

28. Ministry of Petroleum and Mineral Resources KSA. Geologic Map of Kingdom of Saudi Arabia; Ministry of Petroleum and Mineral

Resources: Riyadh, Saudi Arabia, 1987.


Bayumi, T. Impact of natural and human activities on the groundwater quality in the southern part of Al Madinah Al Mu-

nawwarah. Arts Humanit. 2008,35, 1–21.


Italconsult. Detailed Investigation of the Madina Region. In Final Report: Thermatic Report Number 5 and 7; Saudi Arabian Ministry

of Agriculture and Water: Riyadh, Saudi Arabia, 1979.


Alghamdi, A.G.; Aly, A.A.; Aldhumri, S.A.; Al-Barakaha, F.N. Hydrochemical and quality assessment of groundwater resources

in al-Madinah city, Western Saudi Arabia. Sustainability 2020,12, 3106. [CrossRef]


Bob, M.; Abd Rahman, N.; Taher, S.; Elamin, A. Multi-objective assessment of groundwater quality in Madinah City, Saudi Arabia.

Water Qual. Expo. Health 2015,7, 53–66. [CrossRef]


Bamousa, A.O.; El Maghraby, M.E. Groundwater characterization and quality assessment, and sources of pollution in Madinah,

Saudi Arabia. Arab. J. Geosci. 2016,9, 536. [CrossRef]

34. Dahlin, T. The development of DC resistivity imaging techniques. Comput. Geosci. 2001,27, 1019–1029. [CrossRef]

35. Koefoed, O. Geosounding Principles Resistivity Sounding Measurements; Elsevier: Amsterdam, The Netherlands, 1979.

36. Interpex. IX1D v3 Instruction Manual; Interpex Ltd.: Golden, CO, USA, 2008; pp. 1–133.


McLachlan, P.; Blanchy, G.; Chambers, J.; Sorensen, J.; Uhlemann, S.; Wilkinson, P.; Binley, A. The application of electromagnetic

induction methods to reveal the hydrogeological structure of a riparian wetland. Water Resour. Res.


,57, e2020WR029221.


38. McNeill, J.D. Advances in electromagnetic methods for groundwater studies. Geoexploration 1991,27, 65–80. [CrossRef]


Linde, N.; Pedersen, L.B. Characterization of a fractured granite using radio magnetotelluric (RMT) data. Geophysics



1125–1350. [CrossRef]

40. Beamish, D. Quantitative 2D VLF data interpretation. J. Appl. Geophys. 2000,45, 33–47. [CrossRef]


Schütze, C.; Vienken, T.; Werban, U.; Dietrich, P.; Finizola, A.; Carsten, L. Joint application of geophysical methods and Direct

Push-soil gas surveys for the improved de-lineation of buried fault zones. J. Appl. Geophys. 2012,82, 129–136. [CrossRef]


Ahmad, J.; Schmitt, D.R.; Rokosh, C.D.; Pawlowicz, J.G. High-resolution seismic and resistivity profiling of a buried Quaternary

subglacial valley: Northern Alberta, Canada. Geol. Soc. Am. Bull. 2009,121, 1570–1583. [CrossRef]


Abdelfattah, M.; Gaber, A.; Geriesh, M.H.; Hassan, T.M. Investigating the less ambiguous hydrogeophysical method in exploring

the shallow coastal stratified-saline aquifer: A case study at West Port Said Coast, Egypt. Environ. Earth Sci.


,80, 159.



Bratus, A.; Santarato, G. The characterization of aquifers by means of resistivity investigations. Boll. Geofis. Teor. Appl.





Hickin, A.S.; Kerr, B.; Barchyn, T.E.; Paulen, R.C. Using ground-penetrating radar and capacitively coupled resistivity to

investigate 3-D fluvial architecture and grain-size distribution of a gravel floodplain in northeast British Columbia, Canada. J.

Sediment. Res. 2009,79, 457–477. [CrossRef]


Alqadi, M.; Al Dwairi, A.; Dehnavi, S.; Margane, A.; Al Raggad, M.; Al Wreikat, M.; Chiogna, G. A Novel Method to Assess the

Impact of a Government’s Water Strategy on Research: A Case Study of Azraq Basin, Jordan. Water 2021,13, 2138. [CrossRef]

(PDF) Hydrogeophysical Study of Sub-Basaltic Alluvial Aquifer in the Southern Part of Al-Madinah Al-Munawarah, Saudi Arabia

More Story on Source:

* Source→ *


Publication author

offline 6 days

SFi Official

Comments: 0Publics: 1667Registration: 11-03-2021